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The electrical conductivity of graphene containing point defects is studied within the binary alloy model in
its dependence on the Fermi-level position at the zero temperature. It is found that the minimal conductivity
value does not have a universal character and corresponds to the impurity resonance energy rather than to the
Dirac point position in the spectrum. The substantial asymmetry of the resulting dependence of the conduc-
tivity on the gate-voltage magnitude is attributed as well to the very shift of the conductivity minimum to the
resonance state energy.
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I. INTRODUCTION

Graphene, a thermodynamically stable graphite mono-
layer, which has been mechanically exfoliated only a few
years ago,1–3 is gaining considerable scientific attention. This
new material looks promising enough for a number of im-
portant practical applications, some of which have been long
hoped for. While experimenters are targeted at engineering
graphene-based devices in the not so distant future, graphene
attracts theoreticians as the first existing in the free-state
physical system, which can be named two-dimensional with-
out any reservations. Undoubtedly, so far unique electronic
properties of graphene were the most challenging issue.
These properties directly come up from the honeycomb lat-
tice with its two atomic structure, inherent in a single atomic
layer of graphite. The lattice structure leads to the Dirac
dispersion of charge carriers, which makes up the core of
studies devoted to graphene.

Transport properties of this material are, sure enough, of
primary importance for graphene-based electronics. In real
crystals, transport properties essentially depend on nonideal-
ity of the system and on interaction of carriers with other
excitations. Below we are going to focus on imperfections of
graphene, and, in particular, on point defects in it. This al-
lows to rise a question on the spectrum of delocalized carri-
ers, on its dependence on the amount of defects, and, even-
tually, on such a remarkable quantity as the minimal value of
the conductivity.

Initially, two main features of the graphene conductivity
were singled out. First of all, the conductivity of graphene
devices never dropped below a certain value. Since this
minimal value seemed not to vary between different experi-
mental samples, the origin of the universal behavior of the
minimal conductivity value has been extensively searched
for. These efforts shaped the famous minimum conductivity
puzzle. The linear dependence of the conductivity on the gate
voltage made up the second feature. However, the minimal
conductivity value has been found soon to be strongly
sample dependent,4 and the effect of minimum conductivity
has been attributed to graphene’s imperfections. In view of
mentioned features of the graphene conductivity, a qualita-
tive difference between charged impurities and point defects
has been established.5 While it has been demonstrated that

charged impurities are able to yield the required linear de-
pendence of conductivity on the gate voltage, point defects
were shown to produce the sublinear conductivity behavior,
and, consequently, ruled out as the conductivity limiting fac-
tor. The concept of charged impurities as a main source of
the scattering of charge carriers in graphene has been thor-
oughly developed,6–8 and convincingly compared to the ex-
perimental data on graphene with deposited potassium atoms
on its surface.9,10 At that, just a constant contribution to the
conductivity were ascribed to point defects when fitting the
experimental data.

Even though the concept of charged impurities looks
sounding, experiments on graphene in ethanol environment
seriously question the dominant role of the Coulomb
scatterers.11 In addition, the conductivity asymmetry evident
in measurements of graphene with deposited potassium at-
oms has not received the proper explanation yet.9,10 While a
moderate asymmetry can be attributed to the disbalance of
positively and negatively charged impurities,12 the marked
asymmetry of conductivity dependence on the gate voltage
in graphene doped by transition metals manifests the re-
sponse that is different from the one, which is expected from
the charged-impurity centers.13 The clearly sublinear charac-
ter of conductivity curves corresponding to graphene
samples heavily doped by transition metals or lightly doped
by the potassium atoms only strengthen the overall impres-
sion that we are dealing with the interplay of different types
of disorder, and that each one of them should receive a com-
prehensive treatment in an effort to grasp the conductivity
properties in graphene. As an example, an interplay between
charged impurities and point defects, which involves differ-
ent reaction of these two impurity types to screening effects,
can be employed to solve the dilemma of slightly varying
minimal conductivity value for graphene placed into a di-
electric environment.14

It must be stressed that in the mentioned experiments tar-
geted at finding the main scattering channel for carriers in
graphene, different adatoms were deposited on the surface of
samples, which otherwise were considered as pristine. In
fact, here we are dealing with two different issues again. One
of them is determining what actually limits the conductivity
of graphene samples obtained by a certain technique, and
another one is analyzing the effect of intentionally added
impurities on the conductivity features. The latter is closely
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related to the current tendency to functionalize graphene by
substitutionals, adatoms, or chemically active groups. Re-
garding the conducting properties, such an adjustment of
graphene can proceed up to a possibility of the metal-
insulator transition, which has been successfully observed in
graphene doped by hydrogen atoms recently.15 Similarly,
graphene demonstrated insulating behavior after irradiation
by Ne ions, which is expected to produce short-range
defects.16

In view of that, before any complex models of impurity
centers are constructed, the simple ones should be properly
examined in their characteristic aspects and the basic model
of the point defect is definitely among them since it allows
for a Mott transition in impure graphene.17

Below we are returning to the common in semiconductor
physics model of a binary alloy intending to examine what
features of the graphene conductivity it is capable to repro-
duce. Such short-range impurities violate the electron-hole
symmetry of the system and are naturally providing for the
conductivity asymmetry. This impurity model has been stud-
ied either in a weak scattering limit or in the unitary limit.
We are going to show that this model does exhibit some
worthwhile features in between these two extremes. In par-
ticular, we demonstrate that the effective conductivity mini-
mum, in contrast to former studies, corresponds not to the
Dirac point of the spectrum but to the energy of a single-
impurity resonance, where the impurity scattering is the
strongest.

II. MODEL DISORDERED SYSTEM

The host Hamiltonian for electrons in graphene is taken in
the tight-binding approximation with hopping restricted to
the nearest neighbors,

H0 = t �
�n�,m��

cn�
† cm�, �1�

where t�2.7 eV is the hopping parameter for the nearest
neighbors,18 n and m run over lattice cells, � and � enumer-
ate two sublattices of the honeycomb atomic arrangement,
cn�

† and cn� are the electron creation and annihilation opera-
tors at the respective lattice cites. Substitutional impurities
are supposed to be distributed evenly and in uncorrelated
manner on lattice sites. Presence of an impurity at a given
lattice site is assumed to be manifested only through a
change in the respective on-site potential of the tight-binding
Hamiltonian. This type of impurity perturbation fully corre-
sponds to the conventional model of a binary alloy with a
diagonal disorder, which had been extensively used in phys-
ics of real crystals, and sometimes is referred to as the Lif-
shitz �or isotopic� model for historical reasons. The corre-
sponding Hamiltonian for a disordered graphene has the
form,

H = H0 + Himp, Himp = VL�
n,�

�n�cn�
† cn�, �2�

where VL is the deviation of the potential at the impurity site,
and variable �n� is unity with the probability c or zero with
the probability �1−c�, which specifies c as the impurity con-

centration. The “per carbon atom” concentration c can be
easily converted to the impurity coverage,

nim = n0c , �3�

where

n0 =
4

�3a2
�4�

is the inverse area per one carbon atom and a=0.246 nm is
the lattice constant of graphene. Although the impurity per-
turbation Himp is diagonal in the site representation, it in-
duces intervalley as well as intravalley scattering of quasi-
particles in the momentum space. Both processes are treated
below on an equal footing.

The Green’s function of a disordered system,

G = �E − H�−1, �5�

after averaging over different impurity distributions, G= �G�,
regains the translational invariance and can be expressed by
means of the Dyson equation,

G = g + g�G , �6�

where � is the self-energy, and

g�E� = �E − H0�−1 �7�

is the host Green’s function. When the amount of introduced
impurities is moderate, it is possible to implement the modi-
fied propagator method.19 Within this approach, the self-
energy is site diagonal and identical on both sublattices,

� � ��E�I, ��E� � �n�n��E� =
cVL

1 − VLgn�n�	E − ��E�

,

�8�

where I is the identity matrix. At a small impurity concen-
tration, c�1, multiple occupancy corrections are not signifi-
cant. Thus, the method of modified propagator yields results
that are practically indistinguishable from the ones produced
by the conventional coherent-potential approximation.

Indeed, the full self-energy in any disordered system is
not site diagonal. At the same time, following the method of
cluster expansions for the Green’s function in systems of this
kind,20 it can be shown that off-diagonal elements of the
self-energy arise from scatterings on impurity clusters and,
therefore, are proportional to c2. Cluster scattering also gives
a corresponding contribution, which is omitted in Eq. �8�, to
the diagonal part of the self-energy. Increased scattering on
impurity clusters is a reliable sign of the possible state local-
ization at a given energy. In parallel, scattering on impurity
clusters limits the applicability of the modified propagator
approximation.17,21 Therefore, the magnitude of the cluster
contribution to the self-energy will be closely monitored in
what follows. At that, it is worth mentioning that the inter-
valley impurity scattering is contained not only in the cluster
part of the self-energy but also in its single-site part.

The calculation of the diagonal element of the host
Green’s function in the site representation gn�n�, which will
be required for the subsequent analytical treatment of the
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impurity problem, is given in the Appendix. From here and
on we are choosing the bandwidth parameter W, see Eq.
�A9�, as the energy unit. For the sake of clarity, we will use
for the dimensionless energy and the impurity potential fol-
lowing designations:

� =
E

W
, v =

VL

W
, �9�

Since only energies small compared to the bandwidth, i.e.,
those, at which the linear dispersion holds in the host system,
are considered, the corresponding approximation to the di-
mensionless diagonal element of the Green’s function can be
written as follows:

Wgn�n��E� � g0��� � 2� ln��� − i����, ��� � 1. �10�

It is not difficult to see that the actual diagonal element of the
Green’s function in the site representation �10� looks similar
to the properly scaled diagonal element obtained by the fre-
quently used model of massless Dirac fermions, in which,
formally, only one Dirac cone is retained. The net result for
the single-site part of the self-energy appears to be not quali-
tatively different as well, which is a direct outcome of the
fixed magnitude single-site impurity perturbation 	see Eq.
�2�
. When the impurity scattering is viewed from within the
momentum space, this character of the impurity perturbation
obliterates the difference between the intervalley and intra-
valley scattering. Thus, despite the fact that the intervalley
scattering is definitely contained in Eq. �8�, its presence does
not play a particular role in the following analysis.

III. RENORMALIZED ENERGY PHASE AND
CONDUCTIVITY

In order to make the self-consistency condition �8� more
tractable, a regular substitution can be made,

� − ���� = 	 exp�i
�, 	 � 0, 0 � 
 � � , �11�

which singles out the phase of the renormalized energy �
−����. This phase diminishes from � /2 to zero inside the
conduction band and rise from � /2 to � within the valence
band when moving away from the Dirac point position. With
the help of the obtained above expression �10� for the diag-
onal element of the Green’s function and the substitution
�11�, the imaginary part of Eq. �8� can be reduced as follows:

cv2	2 ln 	 + �2
 − ��cot 



+ �1 − v		2 ln 	 cos 
 − �2
 − ��sin 

2

+ �v		2 ln 	 sin 
 + �2
 − ��cos

2 = 0. �12�

Provided that the impurity perturbation strength v and the
impurity concentration c are fixed, this equation establishes a
correspondence between the renormalized energy modulus 	
and its phase 
. For those 	 that are exceeding a certain
threshold magnitude, which is, indeed, determined by the
impurity concentration and the perturbation strength, this
equation always has two different solutions with respect to
the phase 
. One of them �
�� /2� belongs to the conduc-
tion band while the other �
�� /2� lies within the valence
band. The literal carrier energy that corresponds to a given
renormalized energy is determined by the real part of Eq. �8�,

� = 	 cos 
 +
cv�1 − v		2 ln 	 cos 
 − �2
 − ��sin 



�1 − v		2 ln 	 cos 
 − �2
 − ��sin 

2 + �v		2 ln 	 sin 
 + �2
 − ��cos 

2 . �13�

Taken together, the last two equations, Eqs. �12� and �13�,
are making up a set, which implicitly specifies the depen-
dence of the renormalized energy phase 
 on the carrier en-
ergy �.

Since the procedure required to calculate the self-energy
is already outlined, it is possible to employ the Kubo expres-
sion for the conductivity of a disordered graphene at the zero
temperature,22

̃cond =
2e2

�h
�1 + � �F − Re ���F�

− Im ���F�

+
− Im ���F�

�F − Re ���F��arctan� �F − Re ���F�
− Im ���F� �� ,

�14�

where �F is the Fermi energy. By means of the substitution
�11�, which was used above to simplify the self-consistency
condition for the self-energy 	Eq. �8�
, the above expression
can be significantly reduced,

̃cond = � e2

h
�cond,

cond =
2

�
�1 + �cot 
F + tan 
F���

2
− 
F�� , �15�

where 
F is the renormalized energy phase at the Fermi
level, and the dimensionless conductivity cond, which will
be used onward, is singled out. It should be emphasized that
the dimensionless conductivity cond depends on the renor-
malized energy phase 
 alone. In the same way, the well-
known Ioffe-Regel criterion,23 which is commonly used to
separate extended states in a disordered system, and the ap-
plicability criterion of the modified propagator method can
both be expressed through the same renormalized energy
phase.24 It has been shown that with varying the renormal-
ized energy phase, the modified propagator approximation
validity violation and the indication of the state localization
by the Ioffe-Regel criterion are occurring simultaneously for
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those states, which energies fall inside the host band of a
disordered system.17,24 Certainly, it is not conceptually cor-
rect to expect that the Ioffe-Regel criterion can be used to
pinpoint precisely the mobility edge position in a disordered
system. Similarly, there should be no sharp boundaries be-
tween those spectral regions, in which the modified propaga-
tor method is applicable, and those ones, in which it is not.
Nevertheless, there are strong arguments supporting the esti-
mation that the mobility edge in a disordered system should
be located at those energy, at which the renormalized energy
phase is close to � /6 for the conduction band, and, respec-
tively, to 5� /6 for the valence band. Thus, in those spectral
intervals, inside which states are anticipated to be localized
according to the Ioffe-Regel criterion, neither the Kubo for-
mula �15� has any relevance nor the modified propagator
method is reliable. On the contrary, the approach outlined
above is consistent in the spectral domains occupied with
extended states, where the renormalized energy phase 
 is
either small �for the conduction band� or close to � �for the
valence one�.

IV. CONDUCTIVITY IN DIFFERENT SCATTERING
REGIMES

A. Weak scatterers

When the impurity perturbation strength is moderate ��v�
�1�, it is possible to take an advantage of the renormalized
energy phase smallness �or its closeness to �� and construct
a correspondent approximate solution of Eq. �12�,

� �
�cv2

�1 � 2v	 ln 	�2 + ��v	�2 + 2cv2�1 + ln 	�
, � � 1,

�16�

where � stands for 
 inside the conduction band and for �
−
 inside the valence band. The sign in the denominator also
switches from a minus to a plus when moving from the con-
duction band to the valence band. Obviously, the renormal-
ized energy phase is close to � /2 in a narrow interval of
energies around the shifted Dirac point, and thus the above
approximation is not valid inside this region. However, the
transition of the renormalized energy phase from small val-
ues to values that are close to � is very fast. This transitional
region is, in fact, exponentially narrow and, for certain rea-
sons, should be treated separately, as it will be explained in
detail below.

It is not difficult to check that in this scattering regime
��v��1� the effective shift of states along the energy axis,
which is given by the real part of the self-energy Re ����, is
nearly constant in the whole domain under consideration
�����1�. Therefore, as a first approximation, one can take

�	 � � − cv , �17�

where the sign is varying according to the current band as
above so that 	 always remains positive, as it should do. The
expression for the conductivity, Eq. �15�, can be also simpli-
fied utilizing the smallness �or closeness to �� of the renor-
malized energy phase,

cond �
1

�
, � � 1, �18�

where linear terms and terms of the higher order in � are
omitted. All these approximations, Eqs. �16�–�18�, can be
combined into the final expression for the dimensionless
conductivity,

cond �
	1 − 2v��F − cv�ln��F − cv�
2 + 	�v��F − cv�
2

�cv2

+
2

�
	1 + ln��F − cv�
 , �19�

which fits well the conductivity, calculated numerically by
Eqs. �12�, �13�, and �15�, throughout the whole considered
interval of energies �����1�.

As follows from Eq. �19�, the conductivity is gradually
diminishing with increasing the Fermi energy �F from the
valence band to the conduction band for a negative impurity
perturbation �v�0� and vice versa. The conductivity of
graphene calculated by Eqs. �12�, �13�, and �15� without any
additional approximations at different concentrations of point
defects is plotted against the Fermi energy in Fig. 1 for the
case of moderate impurity perturbation ��v��1�. On the
whole, the dependence of the conductivity on the Fermi en-
ergy is smooth and almost featureless while being strongly
asymmetric against the shifted Dirac point position. The only
exception from the monotonic behavior of the conductivity
can be observed in a close vicinity of the Dirac point, where
the curve manifests a sharp dip, which is barely discernible
in the curves corresponding to high impurity concentrations.
If to trust the results yielded by the modified propagator
method all the way down to the Dirac point, the conductivity
at its very tip should drop to 4 /�. This directly corresponds
to the notorious theoretical magnitude of the universal mini-
mum conductivity in the inhomogeneous graphene, which
has been widely debated within the so-called “missed �”
discourse. However, the modified propagator method is not
applicable in the Dirac point neighborhood. It can be
shown17,25 that this approximation is not reliable in the
interval
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FIG. 1. Conductivity of graphene with point defects vs Fermi
energy for v=−0.5 and concentrations c=0.1 /2n and n=1. . .5. Ar-
rows point at positions of narrow dips.
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�� − cv� � exp�−
1

4cv2 − 1� . �20�

Therefore, as it was outlined in the previous section, the
Kubo formula is also ineffective in this interval, and the
obtained conductivity magnitude at the Dirac point has no
physical meaning. Still, the width of the energy interval, in
which the analytical approach fails, is exponentially small
compared to the bandwidth. Since the corresponding dip on
the conductivity curve is so narrow, it should be averaged out
at realistic sample temperature or by means of any other
broadening mechanism.

Consequently, the presence of the sharp dip on the con-
ductivity curve can be neglected, and, probably, should never
come out in actual experiments. The asymmetry of the con-
ductivity dependence on the Fermi energy arises from the
presence of the severely smeared out impurity resonance,
which enhances the impurity scattering. Indeed, the smooth
character of the conductivity curve does not resemble the
experimentally observed check mark shape. However, if this
check mark shape is caused by another dominating type of
impurities, weakly scattering point defects undoubtedly can
contribute to the asymmetry of the conductivity curve.

B. Strong scatterers

In the limit of the strong impurity scattering, �v��1, situ-
ation is completely different. When the impurity potential is
large compared to the bandwidth, a well-defined resonance
state is manifested in the electron spectrum.17 In the limit of
a strong impurity potential, the resonance state energy �r is
determined by the Lifshitz equation,

1 � v Re g0��r� � 2v�r ln��r� �21�

while the resonance state damping is given by

�r �
���r�

2�1 + ln��r��
. �22�

For the resonance state to be well defined, the condition

�r �
�r

��r�
�

�

2�1 + ln��r��
� 1 �23�

must be met. Thus, one should have �ln��r���1, which corre-
sponds to a strong impurity perturbation and a resonance
energy located close to the Dirac point.

The qualitative difference of the strong impurity perturba-
tion case resides not only on the presence of a resonance
state in the spectrum but mainly on the fact that in this case
the electron spectrum undergoes a radical rearrangement.
That is, with increasing impurity concentration a quasigap
filled with localized states opens up around the resonance
state energy.17,21,25 There exists a certain critical concentra-
tion of impurities,

cr � −
1

2v2 ln��/�v��
, � � 1, �24�

which is determined by the mutual spatial overlap of indi-
vidual impurity states. When impurity concentration exceeds

the critical concentration cr of the spectrum rearrangement,
the width of the quasigap starts to increase rapidly with in-
creasing impurity concentration as �−2c / ln c.17,21,25 Cer-
tainly, neither the modified propagator method nor the Kubo
expression for the conductivity will work inside this quasi-
gap. The charge carrier transport in this case should be real-
ized through the thermally activated variable-range hopping
mechanism. Such quasigap has been experimentally ob-
served in fluorinated graphene.26 Therefore, we will consider
only those impurity concentrations that are less than the criti-
cal one �c�cr� for the strong impurity potential. Vacancies
are frequently modeled by point defects with infinite impu-
rity potentials v. Because of this, the critical concentration cr
for vacancies in graphene is zero. In other words, the spec-
trum rearrangement is already over for any concentration of
vacancies. Therefore, vacancies are out of the scope of the
present study.

The conductivity calculated directly by Eqs. �12�, �13�,
and �15� at different concentrations of point defects is shown
in Figs. 2 and 3 for a not so excessive �v=−2� and for a
reasonably strong �v=−8� impurity potential, respectively.
The Dirac point shift, which occurs along with the impurity
concentration increase, is not so pronounced because crv
�1 /v. Like in the case of the weak impurity potential, there
is a sharp dip in the conductivity curve located at the Dirac
point. The hint of this dip can be seen in the figures at con-
centrations that are approaching the critical one. Neverthe-
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FIG. 2. Conductivity of graphene with point defects vs Fermi
energy for v=−2 and concentrations c=cr /2n, n=1. . .5, and cr

�0.012. Arrows point at positions of narrow dips.
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FIG. 3. Conductivity of graphene with point defects vs Fermi
energy for v=−8 and concentrations c=cr /2n, n=1. . .5, and cr

�0.0005. Arrows point at positions of narrow dips.
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less, the presence of this dip should be neglected by the same
arguments as above.

What really distinguishes the strong impurity perturbation
case is the presence of the clear minimum on the conductiv-
ity curve, which is located at the energy of the impurity
resonance state. This is understandable since the impurity
scattering is the strongest around the resonance energy. The
width of this minimum corresponds to the resonance state
broadening, and, therefore, this minimum is not as sharp as
the minimum at the Dirac point. Overall, the conductivity
curve acquires a quasiparabolic form, which is particularly
well pronounced at lower impurity concentrations. In addi-
tion, the conductivity curve appears more symmetric for a
larger impurity potential.

With increasing the impurity concentration, the concentra-
tion broadening of the resonance state also increases. At the
impurity concentrations that are close to the critical one, the
broadening of the resonance state is as wide as the distance
from the resonance energy to the Dirac point. This widening
of the resonance broadening area along with the tendency of
states toward localization inside it are manifested by the ap-
parent flattening of the conductivity curve around the reso-
nance energy at c�cr. Outside the domain of the concentra-
tion broadening, the approximate expression for the
conductivity is even simpler than before,

cond �
	1 − 2v�F ln��F�
2 + 	�v�F
2

�cv2 . �25�

It is not difficult to see from Eq. �25� that in the unitary limit,

cond�v→� �
�F

2	�2 ln��F��2 + �2

�c

, �26�

which corresponds to the known result for vacancies in
graphene.27 As was stated above a quasigap around the Dirac
point should be present at any impurity concentration in the
unitary limit of the impurity perturbation. The approximation
�26� is valid only outside of this quasigap.

For the finite impurity perturbation, the expression �25�
also cannot be used close to the resonance energy. In order to
obtain the minimum value of the conductivity, it is required
to know the magnitude of the renormalized energy phase at
the resonance energy. Its concentration dependence, 
r�c�,
follows from the self-consistency condition �12�. The second
term in this equation nullifies by the very definition of the
resonance energy Eq. �21�. The remaining two terms consti-
tute the relation

c = − 2�r
2�c�tan 
r�c��ln� �r�c�

cos 
r�c�
�tan 
r�c� + 
r�c� −

�

2
� .

�27�

This expression can be significantly simplified by taking into
account that introduced earlier symmetric phase � is small at
low impurity concentrations,

c � ��r
2�c��r�c��1 +

�r�c�
�r

�, �r�c� � 1. �28�

Dependence of the resonance energy on the concentration
�r�c� is very weak for the strong impurity perturbation and
can be neglected. By setting the resonance energy in Eq. �28�
to its value for the isolated impurity, this equation can be
solved for the renormalized energy phase at the resonance �r,

�r�c� �
�r

2
��1 +

c

c�
− 1�, c� =

��r
2�r

4
. �29�

The minimum conductivity at the resonance energy is
then given by Eq. �18�. Indeed, it does not again have the
universal character and varies with impurity concentration.
The minimum value of conductivity calculated numerically
with the help of Eqs. �12�, �13�, and �15� is plotted against
the impurity concentration in Fig. 4 for two different values
of the impurity potential. Initial fast minimum conductivity
drop, which occurs with increasing the impurity concentra-
tion, is followed by a considerable flattening of the curve.
The manifested saturation-type behavior of the minimum
conductivity concentration dynamics qualitatively corre-
sponds to the observed data.9 According to Eqs. �18� and
�29�, at small impurity concentrations, c�c�, the minimum
conductivity of graphene with point defects is proportional to
1 /c, which is similar to the case of charged impurities.28

However, at higher impurity concentrations, c�c�, the mini-
mum conductivity for point defects falls down more slowly,
namely as 1 /�c. Thus, if both expressions for the minimum
conductivity are fitted to each other in the low concentration
limit, then the one corresponding to the point defects should
yield significantly larger values of the minimum conductivity
at c�c�.

V. CONDUCTIVITY ASYMMETRY

The conductivity of graphene devices is usually measured
against the applied gate voltage. Since the gate voltage con-
trols the carrier density in the graphene sample, these experi-
mental curves can be simulated by plotting the conductivity
as a function of the number of occupied states. Leaving out
the irrelevant constant, and taking into account two actual
sublattices, the number of occupied states can be written as
follows:
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FIG. 4. The minimum conductivity vs impurity concentration
for v=−2 �upper curve� and for v=−8 �lower curve�. Corresponding
analytical approximations are given in dashed lines.
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n��F� = −
2

�
�

0

�F

Im��� − �����2 ln	� − ����
 − i��d� .

�30�

The conductivity of impure graphene, calculated as before by
Eqs. �12�, �13�, and �15�, is plotted in Figs. 5 and 6 for both
chosen strengths of impurity perturbation against the number
of occupied states, which is given by Eq. �30�. The number
of occupied states is calculated by the numerical integration.
The change in the introduced magnitude �n��F� can be eas-
ily related to the respective change in the carrier density �n,

�n = n0�n��F� , �31�

where n0 is defined by Eq. �4�. In the usual experimental
setup, the carrier density depends linearly on the gate voltage
Vg so �n=�V�Vg, where �V�7.3�1010 cm−2 V−1. Thus,
when the gate voltage is varying in the window of �100 V,
the value of n��F� varies by 0.004.

It is visible from Figs. 5 and 6 that the calculated conduc-
tivity dependence on the gate voltage is highly asymmetric.
Similar asymmetric character of the conductivity curve has
been already reported elsewhere for the graphene with point
defects.29 While the expected slightly sublinear behavior of
the impure graphene conductivity is readily reproduced, the
asymmetry of the curve appears to be a bit on the extreme
side. Although such a strong asymmetry is sometimes re-

ported for a graphene with deposited adatoms,13 its origin for
the point defects is to be understood. In order to proceed in
this direction, the conductivity can be expanded into a series
in the vicinity of its minimum. Since it has been reasoned
above that the conductivity reaches its minimum value at the
resonance energy �r for the strong impurity perturbation, the
expansion is straightforward,

cond � cond
0 + �r��F − �r�2, �r � 0, �32�

where cond
0 is the minimum value of the conductivity and �r

is some constant.
In the current paper, we restrict ourselves for the strong

scattering regime to those impurity concentrations that are
less than the critical concentration cr of the spectrum rear-
rangement. In this case, the density of states is not consider-
ably distorted by the presence of defects. Because of the
estimative character of this arithmetic, it is quite sufficient to
assume that the density of states remains completely un-
changed, i.e., identical to the host system, except of the rigid
shift of both bands to a new Dirac point �D,

Vg � VD
g + �D��F − �D�2sgn��F − �D�, �D � 0, �33�

where VD
g is those magnitude of the gate voltage Vg, at which

the Fermi level comes to the Dirac point of the spectrum, and
�D is some constant. This equation can be easily solved for
the Fermi energy,

�F � �D +��Vg − VD
g �

�D
sgn�Vg − VD

g � . �34�

Substituting this result to the expansion �32�, one can obtain

cond � cond
0 +

�r

�D
	��Vg − VD

g �sgn�Vg − VD
g �

− ��D��r − �D�
2. �35�

It is evident from this relation, that the conductivity asym-
metry arises from the shift expressed by the second term in
the square brackets. If the conductivity reaches its minimum
precisely at the Dirac point, then the conductivity depen-
dence on the Fermi energy is linear and symmetric. How-
ever, we have demonstrated that the conductivity minimum
is attained at the impurity resonance energy, which is essen-
tially different from the Dirac point energy. This very differ-
ence does form the ground for the substantial conductivity
asymmetry.

VI. CONCLUSION

It is demonstrated that there are two scattering regimes,
which characterize the behavior of the conductivity in
graphene with point defects. In the weak scattering regime,
i.e., when the impurity perturbation strength is less than the
bandwidth, the dependence of the conductivity on the Fermi
energy is monotonic and asymmetric, which can contribute
to the observed conductivity asymmetry, when point defects
does not dominate other sources of scattering. However, in
the strong scattering regime, i.e., when the impurity potential
exceeds the bandwidth, the conductivity caused by point de-
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FIG. 5. Conductivity of graphene with point defects vs number
of carriers for v=−2 and concentrations c=cr /2n, n=1. . .5, and cr
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fects manifests a distinctive minimum in its dependence on
the Fermi energy. This minimum, in contrast to a majority of
anticipations, corresponds not to the Dirac point of the spec-
trum, but to the impurity resonance energy. In this regime,
the asymmetry of the conductivity dependence on the Fermi
energy is noticeable. What is more, the pronounced asymme-
try of the corresponding dependence of the conductivity on
the gate voltage is caused by the very shift of the conductiv-
ity minimum from the Dirac point to the impurity resonance
energy. Despite the basic nature of the considered impurity
model, it can qualitatively capture the essential features of
the impure graphene conductivity manifested in experiments.
Thus, one can expect that increasing the number of param-
eters characterizing the point defect will permit to approach
closer to the quantitative description of conductivity features
in graphene with point defects.
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APPENDIX: DIAGONAL ELEMENT
OF GREEN’S FUNCTION

The straightforward expression for the diagonal element
of the host Green’s function reads

gn�n��E� =
1

SBZ
� E

E2 − E2�k�
dk , �A1�

where the integration is carried over the entire Brillouin
zone, which has the area

SBZ =
8�2

�3a2
, �A2�

and E�k� is the unperturbed dispersion relation correspond-
ing to the host Hamiltonian �1�.

In practical situations the Fermi level in graphene is lo-
cated, nearly unavoidably, in a narrow spectral region, in
which the dispersion is linear with a good accuracy. Near
each of the two inequivalent Dirac points, the dispersion re-
lation E�k� can be expanded,

E�k�� � � vFk�, �A3�

where k� is taken relative to the corresponding Dirac point
and

vF =
�3at

2
�A4�

is the Fermi velocity. Consequently, the integration in Eq.
�A1� over the wave vector can be also performed relative to
the each Dirac cone vertex,

gn�n��E� �
2

SBZ
� E

E2 − �vFk��2dk�, E � 3t , �A5�

where the factor of 2 reflects the existence of two Dirac
cones in the spectrum. However, due to the mutual overlap
between respective cones, the integration in Eq. �A5� cannot
be done over the entire Brillouin zone within the linear ap-
proximation for the dispersion relation. The corresponding
cutoff magnitude of the wave vector is determined by the
sum rule,

4�

SBZ
�

0

kmax

dk� = 1, �A6�

which yields

kmax =
2��

��3a
. �A7�

Then, the integration can be performed exactly,

gn�n��E� �
4�

SBZ
�

0

kmax E

E2 − �vFk��2k�dk�

= �
0

1 E

E2 − �3�t2x
dx

=
�

W
�ln� �2

1 − �2� − i� sgn ��, E � W ,

�A8�

where

W = ���3t �A9�

is the bandwidth parameter for the pure Dirac spectrum.

1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang,
Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Science 306, 666 �2004�.

2 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature �London� 438, 197 �2005�.

3 Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature �Lon-

don� 438, 201 �2005�.
4 Y.-W. Tan, Y. Zhang, K. Bolotin, Y. Zhao, S. Adam, E. H.

Hwang, S. Das Sarma, H. L. Stormer, and P. Kim, Phys. Rev.
Lett. 99, 246803 �2007�.

5 K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 98, 076602
�2007�.

6 E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett. 98,

YURIY V. SKRYPNYK AND VADIM M. LOKTEV PHYSICAL REVIEW B 82, 085436 �2010�

085436-8

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1103/PhysRevLett.99.246803
http://dx.doi.org/10.1103/PhysRevLett.99.246803
http://dx.doi.org/10.1103/PhysRevLett.98.076602
http://dx.doi.org/10.1103/PhysRevLett.98.076602
http://dx.doi.org/10.1103/PhysRevLett.98.186806


186806 �2007�.
7 V. M. Galitski, S. Adam, and S. Das Sarma, Phys. Rev. B 76,

245405 �2007�.
8 S. Adam, E. H. Hwang, E. Rossi, and S. Das Sarma, Solid State

Commun. 149, 1072 �2009�.
9 J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, and

M. Ishigami, Nat. Phys. 4, 377 �2008�.
10 J.-H. Chen, C. Jang, M. Ishigami, S. Xiao, W. G. Cullen, E. D.

Williams, and M. S. Fuhrer, Solid State Commun. 149, 1080
�2009�.

11 L. A. Ponomarenko, R. Yang, T. M. Mohiuddin, M. I. Katsnel-
son, K. S. Novoselov, S. V. Morozov, A. A. Zhukov, F. Schedin,
E. W. Hill, and A. K. Geim, Phys. Rev. Lett. 102, 206603
�2009�.

12 D. S. Novikov, Appl. Phys. Lett. 91, 102102 �2007�.
13 K. Pi, K. M. McCreary, W. Bao, Wei Han, Y. F. Chiang, Yan Li,

S.-W. Tsai, C. N. Lau, and R. K. Kawakami, Phys. Rev. B 80,
075406 �2009�.

14 C. Jang, S. Adam, J.-H. Chen, E. D. Williams, S. Das Sarma, and
M. S. Fuhrer, Phys. Rev. Lett. 101, 146805 �2008�.

15 A. Bostwick, J. L. McChesney, K. V. Emtsev, T. Seyller,
K. Horn, S. D. Kevan, and E. Rotenberg, Phys. Rev. Lett. 103,
056404 �2009�.

16 J.-H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, and E. D.

Williams, Phys. Rev. Lett. 102, 236805 �2009�.
17 Yu. V. Skrypnyk, and V. M. Loktev, Phys. Rev. B 73, 241402�R�

�2006�.
18 S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Phys. Rev.

B 66, 035412 �2002�.
19 R. W. Davies and J. S. Langer, Phys. Rev. 131, 163 �1963�.
20 M. A. Ivanov, V. M. Loktev, and Yu. G. Pogorelov, Phys. Rep.

153, 209 �1987�.
21 S. S. Pershoguba, Yu. V. Skrypnyk, and V. M. Loktev, Phys. Rev.

B 80, 214201 �2009�.
22 H. Kumazaki and D. S. Hirashima, J. Phys. Soc. Jpn. 75, 053707

�2006�.
23 A. F. Ioffe and A. R. Regel, Prog. Semicond. 4, 237 �1960�.
24 Y. Skrypnyk, Phys. Rev. B 70, 212201 �2004�.
25 Yu. V. Skrypnyk and V. M. Loktev, Low Temp. Phys. 33, 762

�2007�.
26 F. Withers, M. Dubois, and A. K. Savchenko, Phys. Rev. B 82,

073403 �2010�.
27 T. Stauber, N. M. R. Peres, and F. Guinea, Phys. Rev. B 76,

205423 �2007�.
28 S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, Proc.

Natl. Acad. Sci. U.S.A. 104, 18392 �2007�.
29 T. Stauber, N. M. R. Peres, and A. H. Castro Neto, Phys. Rev. B

78, 085418 �2008�.

ELECTRICAL CONDUCTIVITY IN GRAPHENE WITH… PHYSICAL REVIEW B 82, 085436 �2010�

085436-9

http://dx.doi.org/10.1103/PhysRevLett.98.186806
http://dx.doi.org/10.1103/PhysRevB.76.245405
http://dx.doi.org/10.1103/PhysRevB.76.245405
http://dx.doi.org/10.1016/j.ssc.2009.02.041
http://dx.doi.org/10.1016/j.ssc.2009.02.041
http://dx.doi.org/10.1038/nphys935
http://dx.doi.org/10.1016/j.ssc.2009.02.042
http://dx.doi.org/10.1016/j.ssc.2009.02.042
http://dx.doi.org/10.1103/PhysRevLett.102.206603
http://dx.doi.org/10.1103/PhysRevLett.102.206603
http://dx.doi.org/10.1063/1.2779107
http://dx.doi.org/10.1103/PhysRevB.80.075406
http://dx.doi.org/10.1103/PhysRevB.80.075406
http://dx.doi.org/10.1103/PhysRevLett.101.146805
http://dx.doi.org/10.1103/PhysRevLett.103.056404
http://dx.doi.org/10.1103/PhysRevLett.103.056404
http://dx.doi.org/10.1103/PhysRevLett.102.236805
http://dx.doi.org/10.1103/PhysRevB.73.241402
http://dx.doi.org/10.1103/PhysRevB.73.241402
http://dx.doi.org/10.1103/PhysRevB.66.035412
http://dx.doi.org/10.1103/PhysRevB.66.035412
http://dx.doi.org/10.1103/PhysRev.131.163
http://dx.doi.org/10.1016/0370-1573(87)90103-7
http://dx.doi.org/10.1016/0370-1573(87)90103-7
http://dx.doi.org/10.1103/PhysRevB.80.214201
http://dx.doi.org/10.1103/PhysRevB.80.214201
http://dx.doi.org/10.1143/JPSJ.75.053707
http://dx.doi.org/10.1143/JPSJ.75.053707
http://dx.doi.org/10.1103/PhysRevB.70.212201
http://dx.doi.org/10.1063/1.2780170
http://dx.doi.org/10.1063/1.2780170
http://dx.doi.org/10.1103/PhysRevB.82.073403
http://dx.doi.org/10.1103/PhysRevB.82.073403
http://dx.doi.org/10.1103/PhysRevB.76.205423
http://dx.doi.org/10.1103/PhysRevB.76.205423
http://dx.doi.org/10.1073/pnas.0704772104
http://dx.doi.org/10.1073/pnas.0704772104
http://dx.doi.org/10.1103/PhysRevB.78.085418
http://dx.doi.org/10.1103/PhysRevB.78.085418

